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mj 
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Qn 
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Coupling coefficient 

Amplitude 

External damping coefficient 

Strain 

Young's modulus 

Four ie r expansion coefficient of 

initial imperfection 

T r a n s v e r s e force per unit length 

Initial displacement 

Dimensionless initial displacement 

Initial velocity 

Dimensionless initial velocity 

Moment of iner t ia of the tube 

Wave number 
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Length of the tube 

Moment 

Magnification factor 

Added m a s s per unit length 

Mass per unit length of the tube 

Per iod (ZTT/CD) 

External loading per unit length 

Dimensionless time coordinate 

Dimensionless force 

General ized dimensionless force 

u / v 

q / (mt+mf) 

Time 

Axial force 

Dimensionless fluid t ranspor t 

velocity 

Steady component of u 

Cri t ical fluid t ranspor t velocity 

Fluid t ranspor t velocity 

Phase velocity 

y 

Yo 

Wave velocity for U = 0 

Phase veloci t ies given in Eqs . 16 

Phase-propagat ing velocity 

Dimensionless t r a n s v e r s e displace­

ment of the tube 

Dimensionless init ial deflec­

tion = Yo/^ 

Work 

Axial coordinate 

T ransve r se d isp lacement of the tube 

Initial deflection 

Distance from each fiber to neutral 

Greek Let te rs 

(X, 6 Dimensionless damping coefficient 

P [mf/(mt + mf)]l''^ 

r Dimensionless axial force 

6-; Kronecker Delta 

e 2/3u (2/3uo, if u is not a constant) 

9^ Arb i t r a ry phase constant 

C,, ^jj Damping coefficient 

X « Coefficient of in te rna l damping 

-^1. ^2 Wave number defined by Eqs . 22 

11 Excitation p a r a m e t e r 

^n> ^n Natural frequency for neglecting 

Coriolis force and u = 0 

i xA 
'^1. Pz. Pi P a r a m e t e r s defined by E q s . 60 

i CJ Stress 

•>" Dimensionless t ime 

•^n Orthonormal eigenfunction for 

neglecting the Cor io l i s force t e rm 

<U Dimensionless frequency 

Natural frequency 

Natural frequency for neglecting the 
Coriolis force 





VIBRATIONS AND STABILITY 
OF A TUBE CONVEYING FLUID 

by 

S. S. Chen and G. S. Rosenberg 

ABSTRACT 

This report analyzes the free vibration, forced vi­
bration, and paramet r ic response of a simply supported tube 
conveying fluid; the effects of initial curvature and Coriolis 
force a re included and evaluated. The equation of motion is 
fornnulated to incorporate initial curvature, damping, axial 
force, and unsteady flow. Galerkin' s method is used to deter­
mine the free vibration by solving an algebraic character­
istic equation; the forced vibration is reduced to a system 
of coupled ordinary differential equations. Excitation due to 
pulsating flow is also examined by means of Galerkin's 
method, which, in this case, yields a set of coupled Mathieu-
Hill-type equations. The possibility of onset of apa rame t r i c 
behavior is demonstrated, and explicit formulas are obtained 
for the boundaries of the first two instability regions. Due 
to the presence of a Coriolis force, the system is character­
ized by a phase difference and mode coupling. The signifi­
cance of the Coriolis force is discussed. The effect of initial 
curvature is analyzed, and wave projJagation and vibrational 
problems in the media without flexural rigidity are also in­
vestigated in detail. 

I. INTRODUCTION 

Various components of reac tors , such as fuel pins, control rods, 
and heat-exchanger tubes, are long, slender members having some poten­
tial for vibration. Structural vibrations often cause damage to such com­
ponents through wear and fatigue. 

One source of energy that can induce these vibrations is the high-
velocity fluid flowing through a reactor core. Thus the vibration of tubes 
exposed to a paral le l flow is of pract ical importance in reactor applications. 

The t r ansver se vibration of a tube conveying fluid has received con­
siderable attention since the early 1950's, Ashley and Haviland' were 
among the f irs t investigators, Housner showed the existence of a cr i t ical 
flow velocity and revised several of the conclusions given previously. ' 



The relationship between natural frequencies and fluid t ranspor t 
velocity was analyzed by Niordson,^ who derived the equation of motion 
from shell theory for a long-wave approximation. Long'* calculated the 
frequency by a power-se r ies method and performed the experimental in­
vestigation. Later, Benjamin^ analyzed the stability of a chain of ar t icu­
lated pipes; the stability of a cantilever pipe was studied theoretically and 
experimentally by Gregory and Paidoussis . More recently, an exact so­
lution for the natural frequencies and axial distribution of phase was com­
puted by Naguleswaran and Williams. And most recently, Thurman and 
Mote' presented a nonlinear oscillation study to a s se s s the applicable range 
of linear theory. 

The present study is within the framework of linear theory. How­
ever, an analytical solution is difficult to obtain because the governing dif­
ferential equation of motion is not self-adjoint, due to the existence of the 
Coriolis force, which creates a mixed derivative S y / 9 x 3 t in the equation 
(see Eq. 5). Accordingly, the first objective is to investigate the signifi­
cance and effects of the Coriolis force on free vibration, forced motion, 
and parametr ic response. 

The influence of unsteady flow has not been analyzed; moreover , 
the tubes treated by the referenced investigators were assumed to be ini­
tially straight. However, the fluid t ransport velocity is not necessar i ly 
steady, and the tubes may have some initial curvature. Therefore, the 
second objective is to study the effects of pulsating flow and initial 
curvature. 

The third objective is to study the overall dynamic behavior and 
its physical origins and effects, such that one may have a bet ter picture 
of the system character is t ics . 

Firs t , the equation of motion is formulated to include the effects of 
viscous damping, axial force, initial curvature, and unsteady flow. As a 
special case, the system without flexural rigidity is first studied in detail. 
Then, free vibration and forced vibration are analyzed, using Galerkin 's 
method and the mode-shape functions obtained for zero Coriolis force. 
The resulting algebraic character is t ic equation is easily solved and gives 
accurate resul ts ; forced vibration is reduced to a system of coupled dif­
ferential equations. The parametr ic response is also examined by 
Galerkin's method, which, in this case, yields a system of Mathieu-Hill 
equations. The boundary equations of instability are obtained for the f irst 
two regions. Finally, the significance of the Coriolis force is discussed in 
terms of energy and transient response. The effects of initial curvature 
are investigated by neglecting the Coriolis force. 



II. STATEMENT OF THE PROBLEMS 

A. Governing Equation 

The system under consideration is a tube conveying fluid whose ve­
locity is U (see Fig. 1). The tube is of uniform cross section and has a 

mass per unit length mj. We 
shall assume that the tube has 
initial deflection yo(x) and initial 
axial tension T, and that the 
mater ia l obeys a s t r e s s - s t r a i n 
relationship of the Kelvin type; 
i.e., 

Ee + \e (1) 

where E is Young's modulus 
and \ is the internal damping 
coefficient. It is known' that if 
the wavelength is large in com­
parison with the diameter of the 
tube, the Bernoulli-Euler beam 
theory can be applied to study 

the vibration of the tube; under such a condition, the tube satisfies the as­
sumption of plane sections rennaining plane. From the classical bending 
theory, we have 

FLUID VELOCITY U(t) 

Fig. 1. Simply Supported Tube Conveying 
Fluid. ANLNeg. No. 113-3637. 

and 

Mz 

ax 

(2) 

The equa t ion of mo t ion m a y be w r i t t e n 

ax^ " ^ ' 
(3) 

w h e r e F i s the r e s u l t a n t l a t e r a l f o r c e e x e r t e d on the tube and i s g iven by 

'St 
+ e | ? - T ( i ! l . ^ ^ (4) 
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The p h y s i c a l i n t e r p r e t a t i o n of e a c h t e r m in Eq. 4 i s a s fo l lows : 

(rrij. + nrif) i s the i n e r t i a f o r c e of tube and fluid; 

-s2 
2m,U ^ — ^ i s the C o r i o l i s f o r c e of m o v i n g fluid; 

t d x d t 

. " - ^ ^ Sx Sx 
i s the c e n t r i f u g a l f o r c e of m o v i n g fluid; 

c - ^ i s the e x t e r n a l d a m p i n g f o r c e ; 
ot 

T | —— + -] i s the t r a n s v e r s e c o m p o n e n t of the a x i a l f o r c e ; 

W axV 
and 

q is the e x t e r n a l f o r c e app l i ed on the tube . 

On subs t i tu t ing E q s . 1, 2, and 4 into Eq. 3, we ob ta in the equa t ion of m o t i o n : 

E l i i + ^ j J ! ^ + m f U ^ ^ + 2mfU # ^ 
i „ 4 i..*>,. ^ -,..2 ^ S x S t Sx Sx 3 t d x ' 

5x2 t f gj2 a t 

q - ( m ^ u ' - T) 
Sx^ • 

(5) 

B. In i t ia l and B o u n d a r y Condi t ions 

The in i t i a l cond i t ions of the sys tena a r e spec i f i ed a s 

y = g(x) at t = 0; 

and 

• ^ = h(x) at t = 0. 
a t 

(6) 
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For the simply supported tube discussed in this study, the proper boundary 
conditions a re : 

and 

at X = 0: y = 0, -^-^ = 0; 
dx ' 

at X = i : y = 0, 2JL = o. 
ax̂  

(7) 

C. Dimensionless P a r a m e t e r s 

For analytical convenience, the following diminsionless quantities 
are introduced: 

and 

? = 

w = 

Wo = 

go = 

ho = 

13 = 

''z IL 

YA. 

YoA-

gA. 

h.«[(mt + mf) /El ] '^ \ 

I 
E(mj + mf) 

1/2 

i'' 

/ mf y/2 
V" t̂ + "̂ f/ 

c£^ 
1/2 [EI(mt + mf)] 

EI 

r = TiVEI, 

, 1/2 
EI \ t 

rrii + rnj / "2 ' 

(8) 
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On substituting from Eqs. 8 into Eqs. 5-7, we obtain the equation of motion 
with corresponding initial and boundary conditions: 

b*v, ^ a V , , 2 „ . S^w 5^w dw a^w 

- T + ' ^ r r r *" - ^^T7^^^''a?a7 + * ^ ^ 7 T -

Q - (u^ - r) afwo (9) 

The initial conditions are : 

and 

go 

srr = ho 
â  
a-r 

at T = 0; 

at T 

(10) 

The boundary conditions are reduced to 

= 0 at 5 = 0; 

and (11) 

^ _afw 

^" ^e 

a^w 
w = 

2 

ai 
Except in the parametr ic response and initial curvature studies, the 

fluid transport velocity u is taken as constant; and except for the initial 
curvature and forced-vibration studies, the tube is assumed to be perfectly 
straight. Equations 5-7 or 9-11 are the complete mathematical statements 
of the system. Also, dependent on the part icular problem of concern, those 
te rms that are anticipated to be insignificant will not be included in the 
analysis. 

in. EXACT SOLUTION FOR THE SYSTEM WITH ZERO RIGIDITY 

A. Unbounded System 

If the flexural rigidity is neglected, Eq. 5 reduces to an equation of 
the second order; further assuming no damping, we obtain 

0 2 ^ 2 . ^ ) | L y , 2 p ^ U ^ ^ . | ! ^ = R ( x , t ) , 
dx at 

(12) 
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whei 

and 

m^ + m^ 

-V = f - ^ - V 
(13) 

Note that v is the phase velocity of a wave wrhen U is equal to zero. When 
P = 1, Eq. 12 is the equation of motion for a moving string, handsaw, thread-
line, or t ransmiss ion chain and thus can be used to shed some light on the 
dynamic behavior of such moving systems in t ransverse vibration. For this 
reason, it is of pract ical interest and value to study this special case. 

F r o m the discriminant of Eq. 12, it may be seen that if 

U < 
VP( 

(14) 
1 - p ' 

the equation is of the hyperbolic type; thus it is possible to seek either a 
progressive-wave solution or a " standing-wave" solution. There are two 
different wave velocities. The general solution of Eq. 12 for R = 0 is 

G(x- vjt) + H(x + V2t), (15) 

where 

vi = [ ^ - p 2 u ' ( l - / 3 ' ) ] ' ^ ' + /3'U, 

V2 = [v^-p^U^(l-p^)] '^ ' - p^U, 
(16) 

and G and H are a rb i t r a ry functions. G corresponds to a plane wave 
which is always propagating downstream (in the same direction as U); and 
H corresponds to a plane wave which may travel upstream or downstream, 
depending on the t ransport velocity U. In the subcritical case ('v > ^U), 
both waves propagate in different directions and with different velocities. 
In the supercr i t ical case (v < pu), both waves propagate in the same direc­
tion, but with different velocities. And in the cri t ical case (v = jSU), there 
is only one propagating wave whose velocity is 2'v; the other is a standing 
wave. In all cases , vj is always faster than Vj; this reflects a tendency for 
the t ranspor t velocity U to accelerate the wave G, but to re ta rd the wave H. 
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The disturbance in these systems is propagated in a different man­
ner from that in a stationary string. Here, the initial value problem of 
the Cauchy type is considered. The system whose motion is governed by 
Eq. 12 is subjected to an initial disturbance specified by Eqs. 6; we are 
interested in the response. The system is nondispersive, and its solution 
can be obtained by D'Alembert 's method. The result is given as follows 
(see Appendix A): 

For v / |3U, 

y(x,t) = r r — ^ 
Vl + V2 

V l g ( x + V 2 t ) + V 2 g ( x - Vit) 

^X+V2t A /-X+V2(t-T) 

+ I h(s) ds + f dT I R(S,T) ds 
7x-"vit Jo 7x-Vi(t-T) 

(IVa) 

For V = |6U, 

y(x.t) = g(x) + 
2v 

r-x- 2vt 
h(s) ds 

+ I dT I R(S,T) ds 
Jo -/x-2v(t-T) 

(17b) 

To illustrate the effect of t ransport velocity on wave propagation, 
two examples are given. 

Initial Disturbance (R = 0) 

and 

The initial data a re taken as 

g = exp(-x^) 

h = 0. 

;i8) 

Figure 2 shows the propagation of an initial disturbance, using these 
values; the effect of U on the propagation is easily seen. At U = 0, the 
waves propagate at the same speed. But for V / 0, the ^waves have dif­
ferent magnitudes of phase velocity and wave form: The wave with la rger 
phase velocity has smaller amplitude. In the supercr i t ical case (Fig. 2c), 
both waves propagate downstream and one has negative magnitude. 



15 

Fig. 2. Propagaticnof Initial Disturbance in an Unbounded System (6 = 1.0). ANL Neg. No. 113-3636. 

I m p r e s s e d Wave of F o r c e (g = 0, h = 0) 

C o n s i d e r the c a s e in which a t r a i n of s inuso ida l w a v e s of f o r c e p e r 
unit length a c t i n g on the s y s t e m is given by 

R(x , t ) = sin [ k ( x - v t ) ] . (19) 

The wave r e p r e s e n t e d by th i s equa t ion t r a v e l s in the x - d i r e c t i o n with wave 
n u m b e r k and c i r c u l a r f r e q u e n c y kv. The g e n e r a l so lu t ion to th is p r o b l e m 
is ob ta ined by subs t i t u t i ng Eq. 19 into E q s . 17. T h r e e c a s e s m u s t be 
d i s t i n g u i s h e d . 

C a s e I: v / vj, v / v^-

1 
y(x,t) = 

Vl + V2 s in [k(x - v t ) ] 
k^(vi + V2) [(v2 + v ) ( v i - v ) 

s in [k(x + V2t)] - s in [k(x - vit) 
Vp + V 

(20a) 

C a s e IT. v = Vi-

y(x,t) = -^-jz—I—^ cos [k(x - v t ) ] + 
k(v2 + v) " ' '"'" "" k2(v2 + v)^ 

{sin [k (x - vt)] - s in [k(x + V2t)]} (20b) 
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C a s e III: v = -V2• 

y(x,t) 
k(vi - v) 

cos [k(x - v t ) ] + 
1 

k^(v, - v)^ 

{sin [k(x- vt ) ] - s in [k (x - Vjt)]} (20c) 

In C a s e I, t h e r e a r e t h r e e p r o g r e s s i n g w a v e s , t r a v e l i n g a t Vj, V2, 
and V, r e s p e c t i v e l y . But in C a s e s II and III, an add i t i ona l r e s o n a n t wave 
p r o g r e s s e s with ve loc i ty v. the a m p l i t u d e i n c r e a s i n g p r o p o r t i o n a l l y with 
the t ime t. This wave is ca l led the " r e s o n a n c e " in th i s unbounded s y s t e m . 
In the s t a t i o n a r y s t r i n g , t h e r e i s only one r e s o n a n t v e l o c i t y of the i m ­
p r e s s e d wave, but t h e r e a r e two r e s o n a n c e v e l o c i t i e s in the m o v i n g s t r i n g . 

B. F in i t e S y s t e m 

To study f r ee v i b r a t i o n , we se t R equa l to z e r o in Eq. 12. Th i s 
equat ion is sa t i s f ied by so lu t ions of the f o r m 

y(x,t) = Al e x p [ i ( \ i x + u)t)] + Aj exp[i(X2X + cut)], 

p rovided that 

v ' - ji'U^ L 
/3^U + V v ^ - /3^U^(1 - (32) 

a n d 

X, 2 2 

/3 U 
p̂ u V^ P^U^( l -/3^) 

21 

(22) 

F r o m knowledge of the b o u n d a r y cond i t i ons , 

y(x,t) = 0 at X = 0, 

and 

Y(x,t) = 0 at X = i , 

(23) 

the va lues of X, and X2 c o r r e s p o n d i n g to the n a t u r a l f r e q u e n c i e s of s y s t e m 
v ibra t ion , and the v a l u e s t a k e n by A; and A2, m a y be d e t e r m i n e d . The f r e ­
quency equat ion is obta ined a s 

sin ( \ i - X2) = 0, 
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and the frequencies are given by 

n(v2 - Ŝ U )̂ 
û n = , , , ' . n = 1, 2, 3 

iv/v2 - (32u2(i .p2) 

The corresponding mode shapes are given by 

. nTTX r - , _ nr . , 

Yn = ^^^~J~ '^°^ [kn(x + Vpt + e j ], 

where 

P̂ ? 

_^!F. 

(24) 

(25) 

(26) 

"" ~ ^ yi-f5^?^(l-/3^) ' 

r = u/v, 

and Sjj is an a rb i t ra ry constant. 

The natural frequencies depend on the t ransport velocity, U; their 
relationships a re given in Fig. 3. Here, to* is defined by 

to 
CD* = ^ , ( 2 7 ) 

\ \ o . 8 \ \ . 

\ l . O \ \ \ 

RITIO OF FLM VELOCITY TO HAVE VELOCITY (u/v) 

Fig. 3. Nondimensional Natural Frequencies vs Nondimensional 
Transport Velocity. ANL Neg. No. 113-3632. 
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where v^ is the natural frequency for zero t ransport velocity. The ratio is 
independent of n, because the media are nondispersive. The distinguishing 
feature of the system is that the phase is not constant along the axis for 
each mode, but propagates with a velocity Vp. 

The phase-propagating velocity is a function of t ransport velocity, 
as shown in Fig. 4. For U = 0, Vp is infinite and the system vibrates in 
the same phase. But when U / 0, the system does not possess the c lass ical 
normal modes, because various parts of the system do not pass through 
their equilibrium configuration at the same instant of t ime. 

> 
-
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Fig. 4. Nondimensional Phase-propagation Velocity vs Nondimensional 
Transport Velocity. ANL Neg, No. 113-3638. 

F i g u r e 5 shows the h i s t o r y of the f i r s t and second m o d e s f r o m which 
the phase is s een to p r o p a g a t e u p s t r e a m . With i n c r e a s i n g t r a n s p o r t v e l o c ­
ity, the p h a s e d i f fe rence a long the tube b e c o m e s m o r e p r o n o u n c e d , and the 
tube v ib ra t i on a s s u m e s a snaking nnotion. Th i s p h e n o m e n o n is due to the 
effect of the C o r i o l i s f o r c e , which is i n t r i n s i c to a nnoving s y s t e m in t r a n s ­
v e r s e v ib ra t ion . 
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u / v ; 0.75 

fRaCTlONS INDICATE TIME PERIOD 

Fig. 5. Variation of Amplitudes of Fundamental Mode and Second 
Mode during a Period. ANL Neg. No. 113-3633. 

IV. F R E E VIBRA,TION 

Now we r e t u r n to the p r o b l e m with f l exu ra l r ig id i ty . By se t t ing 
Q = 0. = 6 = 0, in Eq. 9, we ob ta in the equa t ion of m o t i o n for f r ee v i b r a ­
t ion (no d a m p i n g ) ; i . e . , 

^ ^ - . ( u ^ - r ) ^ ^ ^ 

ar a?' 
+ 2|3u S I ^ T - ^ , = 0, (28) 

with its associated boundary conditions given by Eqs. 11. The difficulty in 
this boundary-value problem a r i ses from the mixed derivative te rm; i.e., 
the equation is not self-adjoint. Niordson^ and Naguleswaran and Williams' 
have formulated the exact solution, but the character is t ic equation is t ran­
scendental and requires an iterative technique for solution. By using 
Galerkin 's method, we will develop a procedure that t ransforms the prob­
lem to a more tractable form. 

For the following analysis, a solution of the form 

w(e.T) = I qn(T)0„(?) (29) 
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is sought, where the q„ are unknown time-dependent functions and the 0n(*) 
are space-dependent functions forming a complete set. The 0n(?) ^-^^ chosen 
as mode-shape functions of the free vibrations without considering the 
Coriolis force; more precisely, they are the eigenfunctions of the system of 
Eqs. 28 and 11 (neglecting the mixed derivative te rm) . 

and 

^e 

p. ^20 a^0 

^e ar̂  

0 ( 0 , T ) = 0 " ( O , T ) = 0 (1 ,T) ( l . T ) 

(30) 

It can be shown that this system is self-adjoint. Such a system has a com­
plete set of real orthogonal eigenfunctions. The eigenfunctions and natural 
frequencies can be obtained by conventional methods. The resu l t s a re sum­
marized as follows: 

Orthonormal eigenfunctions = 0n = v'^' sin (n?:^); 

2 r^ 
Natural frequencies = 0,^^ = nV^ (l - ^^—^ 

(31a) 

(31b) 

and 

Critical fluid t ransport velocity = u = mr; (31c) 

where Uĵ  is the cri t ical flow velocity when the tube buckles or the frequency 
becomes zero. 

Having an orthonormal set of functions, the Galerkin orthogonality 
condition is used to obtain the function q^. On substituting Eq. 29 into Eq. 28, 
multiplying through by 0̂ ,̂ and integrating over 0 < ^ < 1, we find 

<in + f^nqn+e^ ^nj^j = «' (32) 

where 

and 

e = 2jSu 

nj ^ ^ ^ e - (33) 
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Note that Eq. 32 is coupled through the coefficient a^j, which represents 
the effect of the Coriolis force t e rm. F rom Eq. 33, it follows that 

nj + ajn = 0n(l)0j(l) + 0„(O)0j(O). (34) 

Since 0n and 0j satisfy the boundary conditions, the right-hand side of 
Eq. 34 is equal to zero . Accordingly, a^j is skew-symmetr ic ; i.e., 

^nj = -a-jn- (35) 

This property can also be shown by carrying out the integration of Eq. 33. 
Integrating Eq. 33 gives 

"nj n = J, 

"l - (-1)"-J , 1 - (-1)"+Jl / . 
•• + : ' n ?= j ; 

n - J n + j J ' '̂  •" 

(36) 

ajjj is obviously skew-symmetr ic . 

The system including the Coriolis-force t e rm is character ized by 
Eq. 32, •which consists of an infinite number of differential equations. Howf-
ever, typically, only a finite number of equations are selected from case to 
case, according to the desired accuracy. To find the natural frequencies, 
let 

qn = an exp(iCDT). ^ (37) 

Substitution of Eq, 37 into Eq, 32 leads to the algebraic equations 

(fi^-tD^)an + iecD X ^nj'^j = ° ' "'J = ^' ^' ^' ••• • (^^) 
J 

A necessa ry condition for the existence of a nontrivial solution is 

(n^ - CD )̂6„j + isa.a„j = 0. (39) 

The natural frequencies tDj, ca^: CDj, ..., are found by solving this charac ter ­
istic equation. The displacement of the nth mode is 

Wn = Z a p 0 . ( | ) exp(icDnT), 
j ^ ^ 

(40) 

where a ;" ' is the solution of Eqs . 38 corresponding to the natural frequency 

a)jj. The mode shape may be wri t ten in real form as 

Wn = V„( |) cos [uj^T + f^ii) + e„] , (41) 
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where 

ReZa(")0.(5) j ' + [lmaj")0.(e) j 

*n = t̂ "̂' 

lmya'"^0, 
1 J 

ReTa("V 

(42) 

and 9^ is an arbi t rary phase constant. The phase variation along the tube 
is contained in f^, which is much more complicated and cannot be described 
by a phase-propagating velocity such as that in the media without flexural 
rigidity. 

The natural frequency of the fundamental mode has been computed 
taking two-mode, three-mode, and four-mode approximations (as listed in 
Table I) for comparison. This method is very convenient and provides suf­
ficiently accurate results , especially when u is small compared with its 
critical value. A two-mode approximation will give sufficient accuracy for 
the first mode. 

TABLE I. Fundamental Natural Frequency, Oii/^i. Computed from 
Two-mode. Three-mode, and Four-mode Approximation 

f: 
Modes: 

u 

0.0 
0,2 
0,5 
1.0 
1.5 
2.0 
2.5 
3.0 
7T 

2 

1.0 
0.99789 
0.98677 
0.94614 
0.87483 
0.76525 
0.55837 
0.29176 
0.0 

0,2 

3 

1.0 
0,99789 
0.98677 
0.94614 
0.87482 
0.76523 
0.59835 
0,29176 
0,0 

4 

1,0 
0,99789 
0,98675 
0,94608 
0,87470 
0,76505 
0.59813 
0,29160 
0,0 

2 

1,0 
0.99727 
0,98296 
0,93195 
0,84649 
0.72325 
0,54954 
0.25902 
0,0 

0,6 

3 

1,0 
0,99727 
0,98295 
0,93176 
0,84581 
0,72200 
0,54828 
0,25876 
0,0 

4 

1,0 
0,99725 
0.98282 
0,93131 
0,84499 
0.72089 
0.54701 
0,25784 
0,0 

2 

1,0 
0,99603 
0.97554 
0,90598 
0,79888 
0,65896 
0,48145 
0,21739 
0,0 

1.0 

3 

1.0 
0.99603 
0.97543 
0.90475 
0.79520 
0.65333 
0,47674 
0,21657 
0,0 

4 

1.0 
0.99597 

0.97509 
0,90376 
0,79378 
0,65170 
0,47495 
0,21517 
0,0 

Figure 6 presents the variationof fundamental natural frequency as 
a function of the fluid transport velocity (u) when the axial force V is taken 
as zero. It is apparent that the flow does have a tendency to reduce the 
natural frequency; this is attributed to the centrifugal force and the Coriolis 
force. The centrifugal force plays the same role as that of the axial com­
pression, which is known to reduce the natural frequencies, and it is much 
more important than the Coriolis force in reducing the frequencies. How­
ever, the latter produces a phase difference along the tube in addition to its 
small effect on natural frequencies. 

It is observed in Fig. 6 that the crit ical fluid t ransport velocity 
("critical " '") i^ independent of (3; alternatively, the Coriolis force does 
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not affect the i n s t ab i l i t y . If one is i n t e r e s t e d in the s t ab i l i ty a n a l y s i s , the 
C o r i o l i s - f o r c e t e r m m a y be d ropped . The p h y s i c a l r e a s o n i n g is d i s c u s s e d 
in Sec t ion VII. 
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Fig. 6. Fundamental Natural Frequency vs Nondimensional Fluid 
Transport Velocity. ANL Neg. No. 113-3639. 

The d y n a m i c b e h a v i o r i s e s s e n t i a l l y the s a m e a s tha t d i s c u s s e d in 
Sec t ion I I I .B. The only d i f fe rence i s that tUp tube with r ig id i ty is a d i s p e r ­
s ive m e d i u m . The componen t f r e q u e n c i e s of any bending wave wil l p r o p a ­
gate with d i f fe ren t v e l o c i t i e s , and d i s p e r s i o n wil l o c c u r . 

V. F O R C E D VIBRATION 

F o r fo rced v i b r a t i o n , a so lu t ion of the f o r m of Eq. 29 is a s s u m e d , 
and a f te r s u b s t i t u t i o n into Eq. 9 and u t i l i z a t i on of s i m p l e t r a n s f o r m s , we 
a r r i v e a t the o r d i n a r y d i f fe ren t i a l equa t ions 

q „ + 2(;nqn + ^ ? - n j q j + " n < l n = Qr 
J 

(43) 

w h e r e 

Cn = i ("n '^ + 6 ) ' 

Qn = r Q - (u ' 
-'o 

Pndi, 
(44) 
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and £ and an, have been defined in Eqs. 33. The initial conditions for these 
equations are 

qn(o) f go0n <̂ ? 
-'o 

and ^45) 

Sq„{0) , 

The problem has been reduced to a system of coupled ordinary differential 
equations whose coupling coefficients a re skew-symmetr ic . When e = 0, 
the equations are decoupled from each other; in pract ice , e is a small 
parameter 

Firs t , consider the steady-state response problem and let the har-
nnonically varying generalized force be designated by 

Qn = ô n s i" ('̂ •^)-

The steady-state solutions of Eqs, 43 are assumed to be 

qj, - a^ sin (cur) + bĵ  cos (tor). 

(46) 

(47) 

Substituting of Eqs. 46 and 47 into Eq. 43, and setting the coefficients of 
sin (CUT) and cos (UJT) of the resulting equation equal to zero , we obtain 

("n- " ' ) a n - ^Cn'^bn - eu^Zanjbj = a „ 

and (48) 

( f i^-a .2)b^^2C^coa^4ea)Za a = 0 

Employing matrix notation, we write Eqs. 48 as 

C, a - Db" = a 

and 

fib + Da* = 0, 

where Q and D are matr ices whose elements a re 

(49) 



and 

'nj 

n j 

(n'n-"^') 6 

(^Cn* 

nj 

nj + e^nj) 

(50) 

and a, b, and a are column matr ices whose components are an. bn. and a^, 
respectively. Thus, the steady-state problem is reduced to that of solving a 
system of algebraic equations. The values for a" and h are easily obtained 
from Eqs. 49: 

a = (n + Dfi"'D)"' a 

and 

-n"'D(fi +Dfi-'D)-' a. 

(51) 

For the transient response problem, if a large number of modes are 
included, the solution will be quite complicated due to the presence of the 
coupling t e rms . Instead of solving the equations directly, we use a per tur­
bation method borrowed from nonlinear theory to analyze the transient 
problem. 
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For sufficiently small value of e, we may develop the unknown func­
tion qn of Eqs. 43 in power ser ies with respect to e ; 

q = q(°) + £q(') + e^q(^) + (52) 

Substituting the expansion into Eqs. 43 and 45 and collecting the coefficients 
of the like powers of e yields the following sequence of uncoupled differen­
tial equations, which can be solved in order: 

£!i qL°̂  + 2C„4W + n^^qH = Q„; qH(0) = q^(0), i^i^)(0) - ^^0). (53a) 

e ' : q(') + 2C q(') + fi'q(') = - V ^n ^n^n n^n i_ 1 q 
" J J 

(<'): o ( ' ) q-'(O) 0, q(')(0) = 0. (53b) 

j(2) 
*n 

nlql^' -z 
j 

a q 
"J J 

(^); q(2)(0) = 0. qW(0) 53c 

The zero equations are those of the forced motions without Coriolis force; 
the corrections q^'' are the forced motions excited by the Coriolis force 

associated with q̂  ' , and so on. By this technique, the equations are un­
coupled and easily solved. The solutions to Eqs. 53a take three possible 
forms, depending on the size of the damping coefficient. 
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Case I 

•2 / o2 
I f C n < « n ' 

qn(0) + Cn^nfO) 
q!:' = q!:^ exp(-(:„T) cos ( V b ^ ^ r) + - ^ 

< - '^n 

exp(-CnT)sin ( ^ ^ ^ i I T ) + , Q n ( r ) * exp(-i :„T) s in ( v n T U r ) . 

(54a) 

Case II 

If Cn = " n ' 

qW = q„(0) exp(-C„T) + [4„(0) + Cnqn(O)]-^ exp(-C„T) + Q ^ ( T ) * T exp( -C„T) . 

(54b) 

Case III 

If Ĉn > " n -

/ \ q (0) + C q (0) 
qL°' = q„(0) exp(-C,T) cosh U ^ ^ ^ + " r ^ 

• e x p ( - C n T ) s i n h ( 7 ^ I 7 ^ T ) + ^ Q J r ) * exp(-i :„T) sinh ( v c ' n ' ^ n 7 ' 
V Cn " ^ n 

(54c) 

In the above equa t ions . 

Q ( T ) * P ( T ) = r Q ( T ' ) P ( T - T ' ) dT'. (54d) 

By subst i tu t ing the r e s u l t s into f i r s t - o r d e r e q u a t i o n s , we ob t a in the so lu­
tions for the next o r d e r in s i m i l a r m a n n e r . 

VI. P A R A M E T R I C RESPONSE 

In th is sec t ion , the p r o b l e m c o n s i d e r e d i s the d y n a m i c s t a b i l i t y of 
the tube under pu l sa t ing flow. The ve loc i t y v a r i e s with t i m e and i s r e p r e ­
sented in the f o r m 

U(T) = uo[l + (H cos {a)T)], . (55) 
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w h e r e UQ and /i a r e c o n s t a n t s . The f luc tua t ion of flow ve loc i t y can r e s u l t 
f r o m a p u m p i n g o p e r a t i o n o r the u n s t e a d y componen t in a t w o - p h a s e flow. 

The equa t ion of m o t i o n t a k e s the f o r m 

a ^ w , a^w , 2r, / M2 a^w , r, , , i â cu 
TTT + a 4 + Uo[l +fi cos (CUT)] - - — - + 2/3uo[l + ii cos (CUT)] ^ - ^ 

. . , , aw aw a^w 
- puo^tu s m (CUT) ^— + 6 ^ — + — 

a? aT g 2 Q . (56) 

The so lu t ion of Eq. 56 i s sought in the f o r m of E q s . 29 and 31a. Applying 
G a l e r k i n ' s m e t h o d , we d e t e r m i n e a s y s t e m of o r d i n a r y d i f f e ren t i a l equa t i ons 
for the unknown func t ions of the t i m e c o o r d i n a t e s q ( T ) : 

qn "'' ^Cn^'nqn "*" ^[^ """M '^"^ {"^'^)'\'Z^nj^j " ^l^ s in (O^T) Za^^jqj 

+ v ^ { l - [1+M cos ( c u T ) f r ^ } q „ = Qn, (57) 

w h e r e 

2/3uo, 

C„ = -TO, + O, 
^n 2 Zv„ 

(58) 

El = PuoM. 

Qn = r Q*n d?. 
-'o 

and the o t h e r n o t a t i o n s have b e e n def ined b e f o r e . S ince only the s t a b i l i t y 
p r o b l e m is d i s c u s s e d h e r e , Qn is t a k e n a s z e r o , or m o r e p r e c i s e l y , t h e r e 
i s no e x t e r n a l f o r c e and no i n i t i a l c u r v a t u r e . T h u s , E q s . 57 m a y be w r i t t e n 

a • 
4 ^ n + [ l - Pi^-Pz'^n ^ ° s (o^T) - py^ cos (2a^T)] q^ - e^o, s in (O^T) ^ - ^ q j 

+ 2 — 6 + e [ l + f i cos ( a j T ) ] y - ^ q = 0, (59) 
V n " ^ ^n •> 



28 

where 

PI = 1 + if^'. 

and 

Pi = 2fJ, 

Pi = i/J 

(60) 

The equations may be further condensed into one vector equation: 

Mq'+ [ E - P i i - P z cos (CUT)B - P3 cos (2OUT)BJ q" - EiCD sin (cDT)Aq 

+ 2 e[l+;ii cos (CUT)] Aq + 2Dq = 0, (61) 

where M, E, B, and D are diagonal mat r ices with the elements Mnj, Enj, 
Bni, and Dni. respectively; and 
-nj' n j 

^nj 

nj 

nj 

= — ^nj 

-'ny 

- <'ny 

and 

D , = —-f 6 ,. 

(62) 

Matrix A is antisymmetric and is the coupling t e rm result ing from the 
Coriolis force; its element Ani is 

A-nj - 2 ^nj-
n 

(63) 

Equations 61 are the coupled differential equations of the Mathieu-Hill type 
with multiharmonic coefficients. A brief outline of the general theory of 
stability of these equations is given here ; it is patterned closely after the 
discussion by Bolotin.' 

The solution of this system, which corresponds to the boundaries 
of the instability region and has a period of 2P (P = Zir/oi), is sought in 
the form 
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Z (^ . kCDT -* kajT\ 

l^k s i n - ^ + b ^ ""^^ri-
k=l,3,5, . . . ^ '̂  ^ / 

(64) 

On s u b s t i t u t i n g Eq. 64 into Eq . 6 1 , m u l t i p l y i n g out a l l t r i g o n o m e t r i c func­
t i o n s , and e q u a t i n g to z e r o the coef f ic ien t s of s in (kcuT/2) and cos (kcuT/2) 
wi th the s a m e index k, we ob ta in the fol lowing inf ini te s y s t e m of a l g e b r a i c 
e q u a t i o n s for the coe f f i c i en t s aj,. and bj^: 

P , = ^ 
- - ^ B a s - j{Pi- P^) B?3 + ( E - P i B + - i B - - ^ M ] aj 

P. = 

- CD(eA + D) b'l + 2e;UCDAb'3 = 0; 

MGCuAaj + tD(e|UA + D ) TJ + f E - PjB - I P J B - T " ^ ) ^i 

- i(P2 + P3) Bbj - iPsBbs = 0; 

- |P3Ba7 - jPzBas + f l - P j l -—cu^MJ ^3 - | (P2 - P3) Tj - /iecuAb", 

- 3tD(eA + D) b3 - /jeojAbj = 0; 

2e|iiAa5 + 3cD(eA + D) a3 + eficaAa^ - \{pz- P3) Bhi + f E - PiB - —cu^M j b'3 

- jPzBbs + tP3Bb7 U(65) 

E - PiB 
k2cu2 

M) aj^ - i P 2 B l a , _ , , + a. 

ktD(eA + DJ h^ - E / J A I — -

k+2 

3 

k - 2 / 
• f i g , + ^ 

\ + a + ~ T ~ ^k-2 

k+4 k -4 

0; 

and 

( E - PiB - ^ M :) h^ - iP2B(bî +, + bj^.J - iP3i(bk+, + V J 

+ k a 3 ( e l + B) Tĵ  + e f ^ A ( 5 4 - i r^^^ + i l ^ b ^ _ J = 0. 

5, 7, 9, 

E q u a t i o n s 65 a r e e q u i v a l e n t to t he o r d i n a r y d i f f e r e n t i a l E q s . 6 1 ; t h e y m a y 
be c o n d e n s e d in m a t r i x f o r m a s fo l l ows : 
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E22 ^21 F j i F22 

E12 E n F i i F12 

O12 O i l H i i H12 

G22 G21 H21 H22 

where 

= = = P 2 = CD2 = 

E „ = E - PiB + ^ B - -r-M, 

(66) 

Fn = -ecuA - cuD, 

-ecuA + OJD, 

Hn E - (Pi + iPz) B -

(67) 

The boundary equation of the instability regions is obtained by setting the 
determinant of the coefficient of a, and b, equal to zero ; i .e. . 

E22 E21 F21 F22 -

E12 E l l E l l E12 -

G12 G i l H i i H12 -

G22 G21 H21 H22 -

= 0. (68) 

The determinant is infinite. Bolotin shows that this infinite determinant 
belongs to the class of normal determinant implying absolute convergence. 
In view of this property, the boundary of the principal region of instabili ty 
may be located approximately by equating to zero the following determinant : 
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E l l E l l 

Gu H,i 
(69) 

The principal region of instability is expressed in the form (see Appendix B) 

•JXz Zv, VFi, (70) 

where Xi and X2 depend on the pa ramete r s p, u, and /i. If the damping is 
not taken into account, the solution of Eqs. 69 gives the following approxi­
mate formulas for the boundaries: 

iXi = 1 - ( I - M + IM ' ) r\ 

^ p V [ l - ( l - M + iM')r?] 

v i [ l - ( l + M + iM') 4]- v][l-(l-fi + hi') 4] 

and 

iXz = 1 - ( I + M + IM' ) r\ 

^ p V [ l - ( l + M + iM^)r?] 

(71) 

^ i [ l - ( l - i " + i M ' ) r ^ - v ! [ l - ( l + M + i/i') rf] 

If the index k in Eqs. 64 is evaluated, 0, 2, 4, ... , the function q 
will be the solution corresponding to the boundaries of the instability having 
period P , and the calculations a re carr ied out in the same manner as 
before. The solutions obtained determine the boundaries of the second in­
stability region, which is expressed by 

J— cu ,— (72) 

Here, Tj and T2 also depend on the same pa rame te r s . Without considering 
the damping, the approximate formulas determining the boundaries of the 
second instabili ty region a r e : 

Ti = 1 - ( 1 + V ) T\ 

^ ^ V [ l - ( l + | M ^ ) r ^ ] [ l - ( l + y ) r ^ ] ^ (73) 
Contd. 

[1 - (1 ^^^') r\][v\ - (1 ^\p?) r\v\ + (1 +i,.^) r^l.^ - ^\\ - Z^i^r\v 2_4,,2 
2 
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and 

T2 = 1 - {l+lll' 

256 

Z^'rt 
{l+|^^') rl 

/ 3 2 u H [ l - ( l + | M ' ) r n [ l - ( l + i M ' ) r ^ ] - 2M^rJ} 

1 - (1 +11^1 riM - (1 +TM') rlvl + (1 +ii/) r\v\ - vW - 2 / i ^ M 

Contd. 
(73) 

Results of calculations using these formulas and several sets of 
parameters are shown in Figs. 7 and 8. If a point occurs in the noncross-
hatched region, the initial straight form of the tube is dynamically stable. 

EXCITATIOH PAWMETEfi m ) 

Fig. 7. Stability Diagram for a = 0.2. 
ANL Neg. No. 113-3631 Rev. 1. 
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However, if it occurs in the 
crosshatched region, the tube 
will be dynamically unstable, 
and any initial deviation from 
the straight form will increase 
without bound. 

A few conclusions 
can be drawn from the 
resul ts : 

1. The second in­
stability region is much 
narrower than the principal 
region. 

2. The width of the 
instability regions depends 
on the velocity component. 
As ri increases , the para­
metr ic resonance frequency 
decreases and the width of 
the instability region 
increases . 

3. The effect of the 
C o r i o l i s f o r c e i s to lower 
s l igh t ly the i n s t ab i l i t y 
r eg ion . 

Fig. Stability Diagram for 6 = 0.8. 
ANL Neg. No. 113-3630 Rev. 1. 

d e s i g n e r 
l ike ly to 
o c c u r at 

4. The i n s t a b i l i t i e s 
a t cons t an t flow ve loc i t y 
need not c o n c e r n r e a c t o r 

s, b e c a u s e they o c c u r at high t r a n s p o r t v e l o c i t i e s tha t a r e not 
o c c u r in r e a c t o r c h a n n e l s ; h o w e v e r , p a r a m e t r i c r e s o n a n c e can 
l o w e r flow v e l o c i t i e s . 

B e c a u s e of the i m p o r t a n c e of the n o n l i n e a r e f fec t s , the l i n e a r 
t h e o r y i s unab le to p r e d i c t the a m p l i t u d e of o s c i l l a t i o n u n d e r u n s t a b l e con­
d i t i o n s . T h e r e f o r e , n o n l i n e a r t h e o r y should be u s e d in d e t e r m i n i n g the 
a m p l i t u d e r e s p o n s e in the i n s t a b i l i t y r e g i o n s . H o w e v e r , f r o m a p r a c t i c a l 
po in t of v iew, the i m p o r t a n t c o n s i d e r a t i o n i s to avoid the o n s e t of i n s t a ­
b i l i t y ; t h i s c a n be a c h i e v e d on the b a s i s of l i n e a r t h e o r y . As, long a s the 
s y s t e m p r o p e r t i e s a r e known, the i n s t a b i l i t y can be checked , u s i n g the 
m e t h o d and r e s u l t s p r e s e n t e d h e r e . 
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VII. SIGNIFICANCE OF THE CORIOLIS FORCE 

The existence of a Coriolis force in the system gives r i se to a phase 
difference and mode coupling. Due to the presence of the Coriol is-force 
term in the equation of motion, the analytical solution is much more com­
plicated. Its significance is further investigated here with a view toward 
assessing the importance of including the Coriolis-force te rm. 

It has been shown in Section V that by employing Galerkin 's method 
and using the mode-shape functions obtained for a zero Coriolis force, the 
equation of motion is reduced to Eqs. 43, which can be written as one vector 
equation: 

q + Zbq + eAq'+ Hq" = Q, (74) 

where the matrices D, A, and Q, represent the coefficients in Eq. 43. The 
third term on the left-hand side a r i ses from the Coriolis force. As_ shown 
in Eq. 35, the matrix A is skew-symmetric . Although the matr ix A appears 
as an energy-dissipation mechanism, we will show that the total work of the 
forces corresponding to the matr ix of the displacements is equal to zero. 
The virtual work of a generalized force Fn on displacement qn is 

dW = ZFndqn = Z Fn4n dr. (75) 

If 

Fn = -eZ^njqj (76) 

is substituted into Eq. 75, 

dW = -eZZ^njqnq j ^T. (77a) 
n j ' ^ 

Using the result given by Eq. 35, one obtains 

dW = 0. (77b) 

Thus the Coriolis force does not dissipate or supply any energy; i .e., it is 
not a resistant force or an energy source. This implies that during vibra­
tion the energy transfer between fluid and tube due to the Coriolis force is 
zero at any instant. 

The skew-symmetry of the matr ix A is associated with the boundary 
conditions. Recalling Eq. 34, we know that as long as there is no displace­
ment at the ends, the matr ix is skew-symmetr ic and the Coriolis force will 
not contribute damping to the system. Consequently, the natural frequencies 
obtained from Eq. 39 are always real and positive in the subcrit ical region 
when the fluid transport velocity is less than its cri t ical value. Fur the r ­
more, the tube and fluid comprise a conservative system; therefore, the 



C o r i o l i s f o r c e does not affect the i n s t ab i l i t y . H o w e v e r , if t h e r e i s an un­
s u p p o r t e d end, such a s the c a n t i l e v e r tube d i s c u s s e d by G r e g o r y and 
P a i d o u s s i s , * the n a t u r a l f r e q u e n c i e s in the s u b c r i t i c a l r e g i o n a r e c o m ­
p lex , and the C o r i o l i s f o r c e m a y have a d e s t a b i l i z i n g effect on the s y s t e m . 

F r o m Eq. 36, it fo l lows tha t 

"nj fo r n, j even or n,j odd. (78) 

T h i s r e l a t i o n s h i p i m p l i e s that t h e r e i s no coupl ing be tween even m o d e s o r 
odd m o d e s . P h y s i c a l l y , t h i s m e a n s tha t the mo t ion in odd m o d e s wil l ex­
c i te the m o t i o n in even m o d e s only , and v ice v e r s a . This i s m o s t e a s i l y 
u n d e r s t o o d f r o m the fundamen ta l m o d e . The d i s p l a c e m e n t i s a s y m m e t r i c 
a r c b e t w e e n the two s u p p o r t s , but the a n g u l a r v e l o c i t i e s of the left half 
span a r e o p p o s i t e to t hose of the r igh t half span ; i . e . , the C o r i o l i s f o r c e i s 
a n t i s y m m e t r i c ; t h e r e f o r e , only the a n t i s y m m e t r i c m o d e s will be exc i t ed . 
The m o t i o n of t h e s e m o d e s wi l l p r o d u c e a s y m m e t r i c C o r i o l i s f o r c e which , 
in t u r n , wi l l induce s y m m e t r i c mot ion . Th i s is the r e a s o n why the C o r i o l i s 
f o r c e c a u s e s m o d e coupl ing and p h a s e d i f f e r ence . 
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f o r c e 
v e l o c i 
on for 
tube s 

As po in ted out in Sec t ions IV and VI, the inf luence of the C o r i o l i s 
on f r e e v i b r a t i o n and p a r a m e t r i c r e s p o n s e is s m a l l for a t r a n s p o r t 
ty tha t i s s m a l l r e l a t i v e to the c r i t i c a l v a l u e . To o b s e r v e the effect 
ced m o t i o n , we a n a l y z e d the t r a n s i e n t r e s p o n s e of a s i m p l y s u p p o r t e d 
ub jec t ed to a u n i f o r m l y d i s t r i b u t e d s t ep - func t ion loading . With the 

me thod sugges t ed in Sec t ion V, the 
d i s p l a c e m e n t s at a q u a r t e r point 
a r e shown in F ig . 9 for j3 = 0.8 
and J = 0.5. H e r e , the dot ted l ine 
is the so lu t ion neg lec t ing the 
C o r i o l i s f o r c e t e r m ( z e r o - o r d e r 
p e r t u r b a t i o n so lu t ion) ; the sol id l ine 
i s for the c a s e inc luding the C o r i o l i s 
f o r c e ( f i r s t - o r d e r p e r t u r b a t i o n 
so lu t ion) . It i s c l e a r tha t the effect 
of the C o r i o l i s f o r c e on the t r a n ­
s ient r e s p o n s e is neg l ig ib l e . 

F r o m an e n e r g y c o n s i d e r ­
a t ion , f r e e v i b r a t i o n , f o r c e d mo t ion , 
and p a r a m e t r i c r e s p o n s e , we m a y 
conc lude tha t n e g l e c t i n g the C o r i o l i s 
f o r c e in the s tudy of the t r a n s v e r s e 
v i b r a t i o n of a s u p p o r t e d tube wi l l 

DIMENSIONLESS TIME ( f f ^ r ) 

not c a u s e a l a r g e d i s c r e p a n c y ove r 
Fig. 9. Transient Response Curves for the Tube Dis- the r a n g e of fluid t r a n s p o r t v e l o c i -

placements due to Step-function Excitation. t i e s i m p o r t a n t in p r a c t i c a l r e a c t o r 
ANL Neg. No. 113-3635 Rev. 1. d e s i g n . 
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VIII. INFLUENCE OF INITIAL CURVATURE 

A. Steady Flow 

If a tube containing static fluid is subjected to the action of a la tera l 
load, a small initial curvature of the tube has no effect on the bending 
s tress . However, if the fluid is dynamic, the deflection and bending s t r e s s 
will be substantially influenced by initial curvature. 

Consider the static case. The initial shape of the axis of the tube is 
given by a series 

Wo = Zfn sin {mrQ. (79) 

where fn is Fourier-expansion coefficient. The tube conveying steady flow 
is subjected to the action of a longitudinal compressive force u 
(dimensionless). An additional deflection Wi will be produced so that the 
final deflection is 

W = Wi + Wg. ( 8 0 ) 

The static deflection Wi is determined from Eq. 9 by dropping the t ime-
dependent te rms (further assuming Q = F = 0); this yields 

a?' a i ' a?' 

the solution of which is 

wi = Zgn sin (mr?), (82) 
n 

where 

gn = Y — T ^ n (83) 
n 

and rn is the ratio of transport velocity to its cr i t ical value. The total 
deflection is 

w = 2 ^ - - J l _ sin(nTr|). (84) 
n ""n 

It is easily seen from Eq. 84 that the initial deflection corresponding to the 
nth mode is magnified in the ratio l / ( l - r^) . As the t ransport velocity 
reaches its critical value, the deflection becomes infinite and buckling 
occurs; this is consistent with the resul t obtained from the dynamic analysis. 
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The dynamic effect of initial curvature under steady-flow conditions 
can be determined from Eq. 9 or Eqs. 43 and 44. The force induced by the 
initial curvature is time-independent; therefore its effect on the dynamic re ­
sponse of the tube is exactly the same as that of a distributed load of mag­
nitude u^(a2wo/a|^) acting on the tube. 

B. Pulsating Flow 

To understand the influence of the initial curvature on a tube con­
veying pulsating flow, the following problem was analyzed: 

A simply supported tube with an initial imperfection given by Eq. 79 
conveys unsteady flow described in Eq. 55. It is assumed that the tube is 
free from external excitation and axial force. The problem is to determine 
the deflection of the tube. The basic differential equations have been for­
mulated in Section VI, and are given by Eqs. 56-58 with the Coriolis force 
included. It has been shown that the effect of the Coriolis force is small 
when the t ranspor t velocity is small. As a prel iminary study, the coupling 
effect due to the Coriolis force is neglected. If the initial imperfection WQ 
is substituted into Eq. 58, then Eq. 57 reduces to 

qn + ^Cn^'nqn + ^nt^ " Pi^n " Pi^'n <=°s ("̂ '̂ ) " Ps^n c°s (2a)T)] q̂ ^ = 

Vnip^n + Pz^n cos (cuT)+p3r^ cos {Zu^r)] i^. (85) 

Near the second-order resonance, the steady-state solution of the 
form 

3.^ sin (CUT) + bjj cos (CUT) + ĉ ^ (86) 

is assumed. The values for an, bn- and Cn are determined by substituting 
Eq. 86 into Eq. 85, neglecting higher harmonics , equating coefficients of 
like functions, and solving the resulting equations. These operations yield 

and 

an = 4CnMr^n(-^VnAn 

bn = 2Mrn 1 - r ^ n ( l + V ) fn/^n-

l-r^„(l+iM^^ '"" 

l - ^ n ( l + i M ^ ) - ( ^ • f n / ^ n - (87) 



38 

where 

A„ = [ 1 - ( 1 + I M ' ) 41 l - r^„( l+iM' 'nj 

+ < P ^ -2Mr^ l - r ^nd+ iM^) - ( ^ 

The total steady-state amplitude is 

w = Zlfn+'^n + an sin (cuT) + bn cos (CUT)] sin {rnii). 

(88) 

(89) 

A numerical result is given for the curved tube whose unst ressed deflection 
is assumed to be represented by one-half of a sine wave; i .e. . 

Wo = fi sin {-ni). 

The steady-state solution is 

w = [fi + ci + ai sin (cDT) + bi cos (CDT)] sin (TT?), 

and the maximum steady-state amplitude is assumed to be 

Wmax = (fi + ci+ V^fTbf) sin (7T|). 

The magnification factor is defined by 

m a x M.F. = ^^^^ = 1 +-^(c i +v'ai + b^j . 
WQ f i ' 

(90) 

(91) 

(92) 

(93) 

The response curves are shown in Fig. 10. The amplitudes depend on the 
ratio of the frequencies and the parameters r i , fJ, and ^i. It is apparent 
that the initial imperfection is greatly magnified near the instability r e ­
gions. Thus the curvature of the tube can produce large deflection under 
pulsating flow, especially when the fluid t ransport velocity is large. 

The approximate solution obtained in this manner is valid near the 
second instability region. This is to demonstrate the effect of initial cur­
vature under unsteady flow. If one is interested in the exact response 
problem, it is more realistic to use nonlinear theory, which is not dis­
cussed here. 
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^ ^ > - '-
ri = 

Fig. 10 

Response Curves for Tube Displace­
ments withji = 0.2, q = 0.01. ANL 
Neg. No. 113-3634 Rev. 1. 

RATIO OF FREQUENCIES ( u / f j ) 

IX. SUMMARY AND CONCLUSIONS 

The mathematical-model formulation in this report is appropriate 
for t ransverse-vibra t ion studies of a tube conveying fluid with a relatively 
small t ransport velocity compared with its critical value. The effects of 
initial curvature, axial forces, viscous damping, and unsteady flow are in­
cluded in the equation of motion. The peculiar feature is the presence of 
the mixed-derivative ternn. Mathematically, this te rm makes the boundary-
value problems not self-adjoint and induces the coupling coefficients. Physi­
cally, it is of a Coriolis force origin. Due to its effect, the system does not 
possess the classical normal modes. Instead, the tube is characterized by 
phase difference and mode coupling. The mixed-derivative te rm also gives 
r i se to two different phase velocities in the infinite media. Thus the propa­
gations of initial disturbances and impressed force waves are quite different 
from those in fixed media. Although the mixed-derivative te rm produces a 
number of distinguishing features, it may be neglected without causing a 
large discrepancy for the case in which the t ransport velocity is small with 
respect to its cri t ical value. 

By employing the mode-shape functions obtained for zero Coriolis 
force, Galerkin 's method is an efficient approach. The free vibration is re ­
duced to an algebraic character is t ic equation, which is readily solved and 
yields sufficiently accurate resul ts . The forced vibration is transformed to 
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a system of coupled ordinary equations, which may be solved by conven­
tional methods; when the t ransport velocity is small, perturbation can be 
used. 

The fluid transport velocity has a tendency to reduce the natural 
frequencies; this is attributed to the fluid centrifugal force and the Coriolis 
force. The effect of the former is more significant than that of the lat ter . 
In the subcritical region, the natural frequencies are always real positive 
for the tube without displacement at two ends. This is because the Coriolis 
force in this case does not dissipate energy. But if there is displacement 
at either end, the frequencies will be complex and the Coriolis force will 
damp the system. 

The existence of unstable oscillations of the tube under unsteady 
flow has been established, and the boundary equations of the f irs t two in­
stability regions have been obtained in closed form for the case of zero 
damping. Since the instability due to the excitation of pulsating flow can 
occur at relatively low transport velocities, it seems to be a problem of 
importance. 

The initial tube crookedness yields a nonhomogeneous t e rm for the 
equation. In the steady flow, the initial deflection corresponding to its 
nth mode of buckling is magnified in the ratio of l / ( l - rn). But for the 
pulsating flow, the magnification factor becomes very large for certain 
frequency ratios. Initial curvature may induce large deflections if the 
transport velocity is large; it has no beneficial effect upon the vibrations 
and stability. 
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APPENDIX A 

Solution of the Nonhomogeneous Wave Equation 

When the flexural rigidity is neglected, the equation of motion is 
given by Eq. 12, which is repeated for convenience: 

( P ^ U ^ - . ^ ) | ^ . 2 , 2 , ^ , | ! Z . ^ ( . , , ) . 
ax'' Sxat at^ 

We see that the equations of the character is t ics are 

dx - Vl dt = 0 

and 

dx + V2 dt = 0, 

(A.l) 

(A.2) 

where 

and 

1/2 
Vl = [ V ^ - P M 1 - P ' ) ] +/3^U 

1/2 
V2 = [v -P^U'(1 -p^)] - (3̂ U 

(A.3) 

The sign of the quantity v - / 3 U ( l - / 3 ) determines whether Eq. A.l is 
hyperbolic or elliptic. For small velocities U, the equation is hyperbolic; 
for sufficiently high velocities, it is elliptic. For the part icular velocity 

U = • 

it becomes parabolic. 

In the following analysis , we consider the case in which 

(A.4) 

U <-

Assuming that the initial conditions a re prescr ibed by 

y = g(x) at t = 0, 

and 

ay 
= h(x) at t = 0, 

at 
we a re interested in the solution of Eq. A.l that satisfies Eqs. A.5. 

A.5 
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To solve th i s p r o b l e m , we i n t r o d u c e the t r a n s f o r m 

y(x, t) = yi(x, t) + y2(x, t ) , 

such that 

aVj , a^yi a^i 
( p 2 „ 2 . - . ) _ , Z p ^ U — . ^ = 0 

for 

and 

Vl 

ayi 

(x) at t = 0, 

-— = h(x) at t = 0; 
at 

and 

for 

and 

, , , â yz a2y2 a2y2 
O'u ' -v ' — + 2PU - ^7 + --Y = ^(^'t) ^^ 3x2 axat M 

Y2 = 0 at t = 0, 

ay2 

at 
0 at t = 0. 

The solution of E q s . A.7 and A.8 is of the f o r m 

yi = G ( x - v i t ) + H(x + V2t). 

We find i m m e d i a t e l y that 

G(x) + H(x) = g(x) 

and 

- dG dH , , , 
•"' dT + "̂  ST = ^t"'-

(A.6) 

(A.7) 

(A.8) 

(A.9) 

(A. 10) 

A . l l 

(A. 12a) 

(A.12b) 
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I n t e g r a t i o n of Eq . A. 12b g ives 

-x 
-v ,G(x) + V2H(x) = / h(s) ds + C, 

w h e r e C i s a c o n s t a n t . F r o m E q s . A. 12a and A. 13, we find 

(A.13) 

a n d 

G(x) = ^ ^ 

H(x) = — 
V, + v . 

^x 
V2g(x) - / h(s) ds - C 

•la 

vig(x) + / h(x) dx + C 

(A. 14) 

Subs t i t u t ion of the v a l u e s found for G and H in Eq . A . l l y i e lds 

Y i 
Vl + V2 

/^+^2t 
Vig(x + V2t) + V2g(x-Vit) + / h(s) ds 

-^x-vit 
(A. 15) 

wh ich i s D ' A l e m b e r t ' s f o r m u l a for the so lu t ion of the i n i t i a l - v a l u e p r o b l e m 
for the wave equa t ion . 

To so lve Eq. A.9 wi th i n i t i a l cond i t ions A. 10, we i n t r o d u c e the new 
i n d e p e n d e n t v a r i a b l e s ^i and i,^' by m e a n s of the subs t i t u t i on 

? i = X - Vit 

and 

^ 2 = X + V 2 t . 

Equa t ion A.9 t h e n r e d u c e s to 

a^yz 

(A. 16) 

w h e r e 

aeiae2 

mi.iz) 

- R ( l l . ? 2 ) , 

( V l + V j ) 

V1I2 + Vztl ?2 - ?1 

2 ( v i + V2) 

(A.17) 

(A. 18) 

The t r a n s f o r m t a k e s the u p p e r half of the (x, t ) - p l a n e , t > 0, in to the p a r t 
^2 a ii of t he (Ci, l 2 ) - p l a n e . The i n i t i a l cond i t ions for y2(x, t) a t t = 0, lead 
to t he i n i t i a l cond i t i ons 

ay2 ay2 
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on the line ?i = ?2 in the (Ci, i^J-P^^'"-^- Gur p r o b l e m is now to d e t e r m i n e 
Y2 f rom t h e s e in i t i a l v a l u e s in the ha l f -p l ane ^2 " ?i > 0. T h i s i s done by 
in teg ra t ing Eq. A.17 twice , f i r s t with r e s p e c t to 5i and t h e n wi th r e s p e c t 
to I2, s t a r t i ng both t i m e s a t the point on the l ine ?i = ?2- The r e s u l t i s 

'•^tiJL''"-''''"•'''• (A.19) 

Equat ion A.19 can be e a s i l y t r a n s f o r m e d by r e i n t r o d u c i n g x and t 
as independent v a r i a b l e s . F r o m Eq. A.16, it i s s e e n tha t 

d?i d |2 = (vi +V2) dx dt; 

t h e r e f o r e , we obtain a solut ion of the p r o b l e m in t e r m s of t he v a r i a b l e s 
X and t: 

X+V2(t-T) 

Yz 
1 rt r^+V2(t-V 

= — I dT / R ( s , r ) d s . 
Vl + V2 J^ .yx-Vi(t-T) 

(A.20) 

F ina l ly , the s u m of E q s . A.15 and A.20 g ives the so lu t ion of Eq . A . l : 

1 
y = ^r-

Vi + V2 
Vig(x + V2t) + V2g(x-vi t ) + / _ h(s) ds 

^ 'X-Vi t 

^ t X+V2(t-T^ 

+ / d'T I R{S,T) ds 

-^° •^X-V,(t-T) 
(A.21) 

When U = 0, Eq. A.21 r e d u c e s to c l a s s i c a l so lu t ion of the wave equat ic 
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A P P E N D I X B 

E q u a t i o n s D e t e r m i n i n g S t a b i l i t y - I n s t a b i l i t y B o u n d a r i e s 

T h i s append ix l i s t s the equa t ions tha t d e t e r m i n e the v a l u e s of X], 
X2, T], and T2. 

Tak ing t w o - m o d e a p p r o x i m a t i o n , the expans ion of Eq . 69 g ives 

kijl = 0, i , j = 1, 2 , 3 , 4 , 

w h e r e 

( B . l ) 

and 

a „ = 1 - (1 -M + T M ' ) 

a,2 = 0, 

8 CD 

(ft)' 

(ft)" 
0-23 = - T P " : 

aw = - ^ z — . 

r '" 

"12 = - y P ' J -

a3s = 1 - (1 '̂̂ n^Vf-(̂ y. 

044 = 1 - ( l + t ' + T ' ^ (sr 

(B.2) 
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For a given system, the only unknown in Eq. B.l is the frequency CD. F r o m 

this equation, we can determine the values of \—— and denote them by 

Xi and X2. Thus the principal instability region is specified by 

(B.3) 

Similarly, the equation to determine boundaries of the second in­
stability region can be shown as 

0. i.j = 1, 2, 3, 4, 5, 6, 

where 

(B.4) 

= . - ( i . 4 V ) r ; - ( ^ ; . 

Pl2 = 0, 

ftj = 0. 

Pu = ^ P u i ! i , 

fe =!-(. . iMV^(^y, 

fe = - T M P U ^ , 

P „ = - 2 C 2 ^ , 

Ps, = 0, 

PTI = 1 - ( 1 + | M ^ ) ; 

ft* = 0, 

Pjs = -(̂ rf, 

fts = 0, 

^ 4 6 

" 2 

= 0, 

= 0. 

= 0, 

- - T P " - . 

= - 2 A ' r ; , 

1 (l4.Vf-(^y, 
5̂6 = 0 , 

6, - T P U ^ . 

62 = 3 C 2 ^ , 
1̂ 2 

63 = 0 , 

u - -2fJr| . 

65 = 0, and 

^-U.i,')4-[f)\ 

(B.5) 
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We assign T] and Tj for I—I , which satisfy Eq. B.5. The second instability 

region is given by 

•frl s — ^ -fri- (B.6) 
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